
2017 ANDERSEN AIR FORCE BASE WATER QUALITY REPORT

This is the 2017 annual report on the quality of Andersen Air Force Base drinking water. The *Consumer Confidence Report Rule* of the federal Safe Drinking Water Act (SDWA) requires this information be provided to the public. This report includes information on the source of our water and health risks associated with any contaminants that were found. This report contains technical language required by the United States Environmental Protection Agency (USEPA), designed to further public understanding about public water systems and potential hazards.

The Andersen Air Force Base Water System

Andersen Air Force Base provides drinking water to all base housing and facilities derived from the Northern Guam Lens Aquifer, which is a groundwater source underlying the northern portion of Guam. Groundwater is pumped from the underground aquifer into the water distribution system by thirteen (13) wells (see map below).

Why are contaminants found in Drinking Water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic Chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Water Quality Monitoring

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits to contaminants in bottled water, which must provide the same protection for public health.

The *National Primary Drinking Water Regulations* sets limits for contaminants in drinking water and standards for water treatment that primarily safeguard health. These regulations also require us to monitor your drinking water for specific contaminants on a regular basis.

Health Precautions

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risks from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bioenvironmental Engineering at Andersen Air Force Base is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

WATER QUALITY MONITORING RESULTS

The following data presented in these tables are the results of monitoring for the reporting period of 1 January 2017 — 31 December 2017. Andersen Air Force Base monitors for some contaminants less than once per year because the levels do not change frequently. Therefore, some of the reported water quality data may be more than one year old. Contaminants that are not present on table were below the detection levels specified in 40 CFR 141.151(d). Detection of contaminants in drinking water does not necessarily indicate that water poses a health risk. If you would like a complete listing of the Andersen AFB Water System test results, or if you have questions or require additional information about this water quality report, please contact the Bioenvironmental Engineering office at (671) 366-7166.

				Da.	nge		Sample		
Contaminant	Unit	MCL	MCLG	Low	nge High	Violation	Date	Typical Source	Location(s) Detected
Inorganic Chemicals									
Fluoride	ppm	4	4	nd	0.990	No	8/22/2017	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	Booster Station 2, Booster Station 3
Barium	ppm	2	2	nd	0.005	No	8/22/2017	Discharge from metal refineries	Booster Station 2, Booster Station 3, Building 61207 NWF Storage Tank
Nitrate	ppm	10	10	0.826	1.36	No	8/22/2017		Booster Station 2, Booster Station 3, Building 9060 Storage Tank, Building 61207 NWF Storage Tank
Synthetic Organic Cont	aminants								
Di(2-ethylhexyl) phthalate	ppb	6	0	nd	0.001	No	8/22/2017	Discharge from rubber and chemical factories	Buiding 9060 Storage Tank
Special Monitoring for :	Sodium								
Sodium	ppm	n/a	n/a	19.6	33.5	No	8/8/2017	Salt water intrusion from aquifer/salt water interface	Booster Station 2, Booster Station 3, Building 9060 Storage Tank, Building 61207 NWF Storage Tank
Radionuclides									
Alpha emitters	pCi/L	15	0	nd	4.0	No	2017	Erosion of natural deposits	Booster Station 2
Radium 226	pCi/L	5 Note 1	0 Note 1	nd	1.80	No	2017	Erosion of natural denosits	Booster Station 2, Booster Station 3, Building 61207 NWF Storage Tank
Radium 228		Note 1 Note 1	MOLE I	nd	nd				Dunung 01207 NWF Storage Talik
Uranium	μg/L	30	0	nd	1.00	No	2017	Erosion of natural deposits	Building 61207 NWF Storage Tank

DISINFECTION BYPRODUCTS AND DISINFECTANT RESIDUALS											
Contaminant	Range				nge	Violation	Sample Date	Typical Source	Location(s) Detected		
Total Trihalomethanes (TTHMs)	ppb	80	n/a Note 2	18.0	37.4	No	8/22/2017		Det 2 Building 32, NWF Building 61235, WRM Building 51104		
Five Haloacetic Acids (HAA5)	ppb	60	n/a Note 2	nd	2.61	No	8/22/2017		Det 2 Building 32, WRM Building 51104		
Chlorine	Unit	MRDL	MRDLG	Rai Low	nge High	Violation	Sample Date	Typical Source	Location(s) Detected		
Chilorinie	ppm	4	4	0.130	1.80	No	2017	Drinking water standards added to control microbes	Within the distribution system		

LEAD AND COPPER												
Contaminant	Contaminant Unit AL MCLG		MCLG	Number of Samples Exceeding AL	Violation	Sample Date	Typical Source	Location(s) Detected				
Copper	ppm	1.3 Note 3	1.3	Zero	No	Δ11σ-16	Corrosion of household plumbing system, erosion of natural deposits	Within the distribution system				
	Zero out of twenty samples was found to have copper levels in excess of the Action Level 1.3 ppm.											
Lead	ppb 15 0 Zero No Aug-16 Corrosion of household plumbing system, erosion of natural deposits Within the distribution						Within the distribution system					
	Zero out	of twen	ty sampl	es was found to	have lead	levels in exc	ess of the Action Level 15 ppb.					

2013 RADON DATA S	SUMMA	RY							
Contaminant	Unit	MCL	MCLG	Ra	nge	Location(s) Detected			
Contaminant	Oill	IVICE	IVICEG	Low	High	Violation	Date	Typical Source	Location(s) Detected
									Booster Station 2, Booster Station 3,
Radon	pCi/L	ne	ne	86	660	No	8/19/2013	Naturally occurring gas	Building 9060 Storage Tank, Building
									61207 NWF Storage Tank

We have detected radon in the finished water supply, as seen in the 2013 Radon Data Summary above. There is currently no federal regulation for radon levels in drinking water. Exposure to air-transmitted radon over a long period of time may cause adverse health effects.

Radon is a radioactive gas that you cannot see, taste, or smell. It is found throughout the United States. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water will in most cases be a small source of radon in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also caused increased risk of stomach cancer. If you are concerned about radon in your home, test the air in your home. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is 4 pCi/L or higher. There are simple ways to fix radon problem that are not too costly. For additional information call your state radon program or call EPA's Radon Hotline (800-SOS-RADON).

- Note 1: The combined radium (total radium-226 and radium-228, pCi/L) MCL and MCLG are 5 and 0 respectively.
- Note 2: Although there is no collective MCLG for this group, there are individual MCLGs for some of the individual contaminants. **HAA:** monochloroacetic acid (70ppb), dichloroacetic acid (zero), tri-chloroacetic acid (20 ppb) **THM:** bromodichloromethane (zero), bromoform (zero), dibromo-chloromethane (60 ppb).
- Note 3: The AL is exceeded if the concentration of more than 10 percent of tap water samples collected (the "90th percentile" level) is greater than 1.3 ppm for copper and 15 ppb for lead.

DEFINITIONS:

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in dinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfection Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

ABBREVIATIONS:

n/a: not applicable

nd: not detected (contaminant levels are below detection capabilities)

ne: not established

ppb: parts per billion or micrograms per liter (μg/L); a unit of measure equivalent to a single

penny in \$10,000,000

ppm: parts per million or milligrams per liter (mg/L); a unit of measure equivalent to a single

penny in \$10,000

pCi/L: picoCuries per liter

Water Quality Reporting

Results of regular monitoring are an indicator of whether or not your drinking water meets health standards.

For the year 2017, the Andersen Air Force Base Water System met all primary drinking water quality standards. We are proud to report that we did not violate any Maximum Contaminant Level or any other water quality standards. All safe drinking water reports, along with supporting laboratory reports were submitted on time as required by the Guam Environmental Protection Agency.

How Can You Report a Water Quality Complaint?

Should you notice that your water is discolored, has a funny taste, or if you have any concerns about your drinking water, we strongly encourage you to contact Bioenvironmental Engineering at (671) 366-7166. Arrangements can be made to have your water sampled and analyzed to ensure that it is safe to drink.

How Can You Obtain Additional Information?

Team Andersen is committed to ensuring the quality of Andersen Air Force Base drinking water to the highest standards possible. Public queries and additional information regarding this report can be obtained by contacting the Andersen Public Affairs Office at (671) 366-4202. This report can be accessed on the Andersen Air Force Base web page by 1 July 2018. Printed copies of this report can be obtained at the base library, or at the Bioenvironmental Engineering Office. For electronic copies, please contact Bioenvironmental Engineering at (671) 366-7166.